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Optimal decision making mandates organisms learn the relevant
features of choice options. Likewise, knowing how much effort we
should expend can assume paramount importance. A mesolimbic
network supports reward learning, but it is unclear whether other
choice features, such as effort learning, rely on this same network.
Using computational fMRI, we show parallel encoding of effort and
reward prediction errors (PEs) within distinct brain regions, with
effort PEs expressed in dorsomedial prefrontal cortex and reward
PEs in ventral striatum. We show a common mesencephalic origin
for these signals evident in overlapping, but spatially dissociable,
dopaminergic midbrain regions expressing both types of PE. During
action anticipation, reward and effort expectations were integrated
in ventral striatum, consistent with a computation of an overall net
benefit of a stimulus. Thus, we show that motivationally relevant
stimulus features are learned in parallel dopaminergic pathways,
with formation of an integrated utility signal at choice.

effort prediction errors | reward prediction errors | apathy |
substantia nigra/ventral tegmental area | dorsomedial prefrontal cortex

Organisms need to make energy-efficient decisions to maximize
benefits and minimize costs, a tradeoff exemplified in effort

expenditure (1–3). A key example occurs during foraging, where an
overestimation of effort can lead to inaction and starvation (4),
whereas underestimation of effort can result in persistent failure,
as exemplified in the myth of Sisyphus (5).
In a naturalistic environment, we often simultaneously learn

about success in expending sufficient effort into an action as well as
the reward we obtain from this same action. The reward outcomes
that signal success and failure of an action are usually clear, although
the effort necessary to attain success is often less transparent. Only
by repeatedly experiencing success and failure is it possible to ac-
quire an estimate of an optimal level of effort needed to succeed,
without unnecessary waste of energy. This type of learning is im-
portant in contexts as diverse as foraging, hunting, and harvesting
(6–8). Hull in his “law of less work” proposed that organisms
“gradually learn” how to minimize effort expenditure (9). Surpris-
ingly, we know little regarding the neurocognitive mechanisms that
guide this form of simultaneous learning about reward and effort.
A mesolimbic dopamine system encodes a teaching signal teth-

ered to prediction of reward outcomes (10, 11). These reward
prediction errors (PEs) arise from dopaminergic neurons in sub-
stantia nigra and ventral tegmental area (SN/VTA) and are
broadcast to ventral striatum (VS) to mediate reward-related ad-
aptation and learning (12, 13). Dopamine is also thought to provide
a motivational signal (14–18), while dopaminergic deficits in ro-
dents impair how effort and reward are arbitrated (1, 4, 19). The
dorsomedial prefrontal cortex (dmPFC; spanning presupple-
mentary motor area [pre-SMA] and dorsal anterior cingulate cortex
[dACC]) is a candidate substrate for effort learning. For example,
selective lesioning of this region engenders a preference for low-
effort choices (15, 20–23), while receiving effort feedback elicits
responses in this same region (24, 25). The importance of dopamine
to effort learning is also hinted at in disorders with putative aberrant
dopamine function, such as schizophrenia (26), where a symptom
profile (“negative symptoms”) often includes a lack of effort ex-
penditure and apathy (27–30).

A dopaminergic involvement in effort arbitration (14, 15, 17, 19,
30) suggests that effort learning might proceed by exploiting similar
mesolimbic mechanisms as in reward learning, and this would
predict effort PE signals in SN/VTA and VS. Alternatively, based
on a possible role for dorsomedial prefrontal cortex, effort and
reward learning signals might be encoded in two segregated (do-
paminergic) systems, with reward learning relying on PEs within
mesolimbic SN/VTA and VS and effort learning relying on PEs in
mesocortical SN/VTA projecting to dmPFC. A final possibility is
that during simultaneous learning, the brain might express a uni-
fied net benefit signal, integrated over reward and effort, and up-
date this signal via a “utility” PE alone.
To test these predictions, we developed a paradigm wherein

subjects learned simultaneous reward and effort contingencies in an
ecologically realistic manner, while also acquiring human functional
magnetic resonance imaging (fMRI). We reveal a double dissoci-
ation within mesolimbic and mesocortical networks in relation to
reward and effort learning. These segregated teaching signals, with
an origin in spatially dissociable regions of dopaminergic midbrain,
were integrated in VS during action preparation, consistent with a
unitary net benefit signal.

Results
Effort and Reward Learning. Our behavioral task required 29 male
subjects to learn simultaneously about, and adapt to, changing effort
demands as well as changing reward magnitudes (Fig. 1A and SI
Appendix). On every trial, subjects saw one of two stimuli, where
each stimulus was associated with a specific reward magnitude (1 to
7 points, 50% reward probability across the entire task) and a re-
quired effort threshold (% individual maximal force, determined
during practice). These parameters were initially unknown to the
subjects and drifted over time, such that reward and effort magni-
tudes changed independently. After an effort execution phase, the
associated reward magnitude of the stimulus was shown together with
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categorical feedback as to whether the subject had exceeded a
necessary effort threshold, where the latter was required to suc-
cessfully reap the reward. Importantly, subjects were not informed
explicitly about the height of the effort threshold but only received
feedback as to the success (or not) of their effort expenditure. On
every trial, subjects received information about both effort and
reward, and thus learned simultaneously about both reward
magnitude and a required effort threshold, through a process of
trial and error (Fig. 1B).
To assess learning, we performed a multiple regression analysis

(Fig. 1C) that predicted exerted effort on every trial. A significant
effect of previous effort [t(28) = 15.96, P < 0.001] indicated subjects
were not exerting effort randomly but approximated the effort
expended with previous experience of the same stimulus, as expec-
ted from a learning process. Subjects increased their effort for higher
rewards [t(28) = 4.97, P < 0.001], consistent with a motivation to
expend greater energy on high-value choices. Last, subjects exerted
more effort following trials where they failed to exceed an effort
threshold [t(28) = 10.75, P < 0.001], consistent with adaptation of
effort to a required threshold. Subsequent analysis showed that
subjects not only increased effort expenditure after missing an effort
threshold [Fig. 1D; t(28) = 17.08, P < 0.001] but also lessened their
effort after successfully surpassing an effort threshold [t(28) =
−17.15, P < 0.001], in accordance with the predictions of Hull’s
law (9). Thus, these analyses combined reveal subjects were able to
simultaneously learn about both rewards and effort requirements.

A Computational Framework for Effort and Reward Learning. To
probe deeper into how precisely subjects learn about reward and
effort, we developed a computational reinforcement learning model
that predicts effort exerted at every trial, and compared this model
with alternative formulations (see SI Appendix, Fig. S1 for detailed
model descriptions). Our core model had three distinct components:
reward learning, effort learning, and reward–effort arbitration (i.e.,
effort discounting), that were used to predict effort execution at
each trial. To capture reward learning, we included a Rescorla–
Wagner–like model (31), where reward magnitude learning oc-
curred via a reward prediction error. Note that our definition of
reward PE deviates from standard notation (10, 11, 32), dictated in
part by our design. First, our reward learning algorithm does not
track actual rewarded points. Because subjects learned about reward
magnitude even if they failed to surpass an effort threshold, and thus
not harvest any points (as hypothetical rewards were visible behind a
superimposed cross), the algorithm tracks the magnitude of poten-
tial reward. This implementation aligns with findings that dopamine
encodes a prospective (hypothetical) prediction error signal (33, 34).
Second, we used a probabilistic reward schedule, similar to that used
in previous studies of reward learning (35–37). Subjects received
0 points in 50% of the trials (fixed for the entire experiment), which
in turn did not influence a change in reward magnitude. Using
model comparison (all model fits are shown in SI Appendix, Fig. S2),
we found that a model incorporating learning from these 0-outcome
trials outperformed a more optimal model that exclusively learned

Fig. 1. Effort learning task and behavior. (A) Each stimulus is associated with a changing reward magnitude and effort threshold. After seeing a stimulus,
subjects exert effort using a custom-made, MR-compatible, pneumatic hand gripper. Following a ramp-up phase (blue frame), subjects continuously exert a
constant force to exceed an effort threshold (red frame phase). The duration of force exertion was kept constant across all trials to obviate temporal discounting
that could confound effort execution (14). If successful, subjects received points that were revealed during feedback (here, 4 points). If a subject exerts too little
effort (i.e., does not exceed the effort threshold), a cross is superimposed over the number of (potential) points, indicating they will receive no points on that trial,
but still allowing subjects to learn about the potential reward associated with a given stimulus. (B) Effort and reward trajectories and actual choice behavior of an
exemplar subject. Both effort threshold (light blue line) and reward magnitude (red points) change across time. Rewards were delivered probabilistically, yielding
no reward (gray x’s) on half the trials, independent of whether subjects exceeded a required effort threshold (“0” presented on the screen). The exemplar subject
can be seen to adapt their behavior (blue diamonds) to a changing effort threshold. Model predictions (pink, depicting maximal subjective net benefit) closely
follow the subject’s behavior. As predicted by our computational model, this subject modulates their effort expenditure based on potential reward. In low-effort
trials, the subject exerts substantially more effort in high-reward trials (e.g., Left side) compared with similar situations in low-reward trials (e.g., Right side).
(C) Group analysis of 29 male subjects shows that the exerted effort is predicted by factors of previous effort, failure to exceed the threshold on the previous trial,
and reward magnitude, demonstrating that subjects successfully learned about reward and effort requirements. (D) If subjects fail to exceed an effort threshold,
they on average exert more force in a subsequent trial (orange). Following successful trials, subjects reduce the exerted force and adapt their behavior by
minimizing effort (green). Bar plots indicate mean ± 1 SEM; ***P < 0.001. au, arbitrary units.

E7396 | www.pnas.org/cgi/doi/10.1073/pnas.1705643114 Hauser et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
9,

 2
02

1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705643114/-/DCSupplemental/pnas.1705643114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705643114/-/DCSupplemental/pnas.1705643114.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1705643114


www.manaraa.com

from actual reward magnitudes. This is in line with classical re-
inforcement learning approaches (31, 32), wherein reward expec-
tation manifests as a weighted history of all experienced rewards.
To learn about effort, we adapted an iterative logistic regression

approach (38), where subjects are assumed to learn about effort
threshold based upon a PE. We implemented this approach be-
cause subjects did not receive explicit information about the exact
height of the effort threshold and instead had to infer it based on
their success history. Here we define an effort PE as a difference
between a subject’s belief in succeeding, given the executed effort,
and their actual success in surpassing an effort threshold. This effort
PE updates a belief about the height of the effort threshold and
thus the belief of succeeding given a certain effort. Note that this
does not describe a simple motor or force PE signal, given that a
force PE would be evident during force execution to signal a de-
viation between a currently executed and an expected force.
Moreover, in our task, effort PEs are realized at outcome pre-
sentation in the absence of motor execution, signaling a deviation
from a hidden effort threshold. Finally, as we are not interested in a
subjective, embodied experience of ongoing force execution, we
visualized the executed effort by means of a thermometer, an ap-
proach used in previous studies (39, 40).
The two independent learning modules, involving effort or re-

ward, are combined at decision time to form an integrated net utility
of the stimulus at hand. Previous studies indicate that this reward–
effort arbitration follows a quadratic or sigmoidal, rather than a
hyperbolic, discount function (39–41). As in these prior studies, we
also found that a sigmoidal discounting function best described this
arbitration (SI Appendix, Fig. S2) (39, 40). Furthermore, it was
better explained if reward magnitude modulated not only the height
of this function but also its indifference point. A sigmoidal form
predicts that the utility of a choice will decrease as the associ-
ated effort increases. Our model predicts utility is little affected in
low-effort conditions (compare Fig. 1B and Fig. S1C). Moreover,
the impact of effort is modulated by reward such that in high-reward

conditions, subjects are more likely to exert greater effort to ensure
they surpass an effort threshold (compare SI Appendix, Fig. S1).
To assess whether subjects learned using a PE-like teaching

signal, we compared our PE-based learning model with alternative
formulations (SI Appendix, Fig. S2). A first comparison revealed
that the PE learning model outperformed nonlearning models
where reward or effort was fixed rather than dynamically adapted,
supporting the idea that subjects simultaneously learned about,
and adjusted, their behavior to both features. We also found that
the effort PE model outperformed a heuristic model that only
adjusted its expectation based on success but did not scale the
magnitude of adjustment using an effort PE, in line with a previous
study showing a PE-like learning of effort (24). In addition, we
compared the model with an optimal reward learning model,
which tracks the previous reward magnitude and ignores the
probabilistic null outcomes, revealing that PE-based reward
learning outperformed this optimal model.
Finally, because our model was optimized to predict executed

effort, we examined whether model-driven PEs also predicted an
observed trial-by-trial change in effort. Using multiple regression, we
found that model-derived PEs indeed have behavioral relevance,
and both effort [t(28) = 13.50, P < 0.001] and reward PEs [t(28) =
2.10, P = 0.045] significantly predict effort adaptation. This provides
model validity consistent with subjects learning about effort and
reward using PE-like signals.

Distinct Striatal and Cortical Representations of Reward and Effort
Prediction Errors. Using fMRI, we tested whether model-derived
effort and reward PEs are subserved by similar or distinct neural
circuitry. We analyzed effort and reward PEs during feedback
presentation by entering both in the same regression model (non-
orthogonalized; correlation between regressors: r = 0.056 ± 0.074;
SI Appendix, Fig. S4). Bilateral VS responded significantly to re-
ward PEs [P < 0.05, whole-brain family-wise error (FWE) correc-
tion; see SI Appendix, Table S1 for all activations] but not to effort
PEs (Fig. 2 A–C). In contrast, dmPFC (peaking in pre-SMA

Fig. 2. Separate reward and effort PEs in striatum and cortex. (A) Reward PEs encoded in bilateral ventral striatum (P < 0.05, whole-brain height-FWE correction).
(B) Analysis of VS shows an encoding of a full reward PE, reflecting both expectation [t(27) =−2.44, P = 0.021] and outcome components [t(27) = 6.68, P < 0.001]. (C) VS
response at outcome showed a significantly increased response to reward PEs relative to effort PEs [t(27) = 5.80, P < 0.001], with no evidence for an effect of effort PE
[t(27) = −0.60, P = 0.554]. (D) Effort PEs encoding in dorsomedial prefrontal cortex (P < 0.05, whole-brain height-FWE correction). This PE includes components
reflecting effort expectation [t(27) = 2.28, P = 0.030] and outcome [t(27) = −4.59, P < 0.001; i.e., whether or not threshold was surpassed]. (E) Activity in dmPFC
increased when an effort threshold is higher than expected and decreased when it is lower than expected. (F) dmPFC showed no encoding of a reward PE [t(27) = 0.37,
P = 0.714], and effort PEs were significantly greater than reward PEs in this region [t(27) = 4.87, P < 0.001]. The findings are consistent with effort and reward PEs being
processed in segregated brain regions. Bar and line plots indicate mean effect size for regressor ± 1 SEM. *P < 0.05; ***P < 0.001; nonsignificant (n.s.), P > 0.10. a.u.,
arbitrary units.
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extending into dACC) responded to effort PEs (P < 0.05, whole-
brain FWE correction; Fig. 2 D–F and SI Appendix, Table S1) but
not to reward PEs (Fig. 2F). In relation to dmPFC, activity in-
creased if an effort threshold was higher than expected and was
attenuated if it was lower than expected, suggestive of an in-
vigorating function for future action. This finding is also in keeping
with previous work on effort outcome (24, 25), and a significant
influence of dmPFC activity on subsequent change in effort exe-
cution [effect size: 0.04 ± 0.07; t(27) = 2.82, P = 0.009] supports its
behavioral relevance in this task and is consistent with updating a
subject’s expectation about future effort requirements (33). In-
terestingly, dmPFC area processing effort PE peaks anterior to pre-
SMA and lies anterior to where anticipatory effort signals are found
in SMA (SI Appendix, Fig. S7), suggesting a spatial distinction be-
tween effort anticipation and evaluation.
Neither VS nor dmPFC showed a significant interaction effect

between effort and reward PEs [dmPFC: effect size: −0.32 ± 3.77;
t(27) = −0.45, P = 0.657; VS: effect size: −0.41 ± 1.59; t(27) = −1.36,
P = 0.185]. Post hoc analysis confirmed that both components of a
prediction error, expectation and outcome, were represented in
these two regions (Fig. 2 B and E), consistent with a full PE
encoding rather than simply indexing an error signal (cf. 42). The
absence of any effect of probabilistic 0 outcomes in dmPFC further
supports the idea that this region tracks an effort PE rather than a
general negative feedback signal [effect size: 0.01 ± 0.18; t(27) =
0.21, P = 0.832]. No effects were found for negative-heading (in-
verse) PEs in either reward or effort conditions (e.g., increasing
activation for decreasing reward PEs; SI Appendix, Table S1). To
examine the robustness of this double dissociation, we sampled
activity from independently derived regions of interest (ROIs; VS
derived from www.neurosynth.org; dmPFC derived from ref. 25),
and again found a significant double dissociation in both VS (SI
Appendix, Fig. S5A) and dmPFC (SI Appendix, Fig. S5B). Moreover,
this double dissociation was also evident in a whole-brain compar-
ison between effort and reward PEs [SI Appendix, Fig. S5C; dmPFC:
Montreal Neurological Institute (MNI) coordinates: −14 −9 69, t =
6.05, P < 0.001 cluster-extent FWE, height-threshold P = 0.001; VS:
MNI: 15 9 −6, t = 6.73, P < 0.001 cluster-extent FWE].
Additionally, we controlled for unsigned (i.e., salience) effort and

reward PE signals by including them as additional regressors in the
same fMRI model (correlation matrix shown in SI Appendix, Fig.
S4), as these signals are suggested to be represented in dmPFC (e.g.,
43). Interestingly, when analyzing the unsigned salience PEs, we
found that both effort and reward salience PEs elicit responses in
regions typical for a salience network (44), and a conjunction
analysis across the two salience PEs showed common activation in
left anterior insula and intraparietal sulcus (SI Appendix, Fig. S3).

Simultaneous Representations of Effort and Reward PEs in Dopaminergic
Midbrain. We next asked whether an effort PE in dmPFC reflects
an influence from a mesocortical input originating within SN/VTA.
Dopaminergic cell populations occupy the midbrain structures
substantia nigra and ventral tegmental area, and project to a range
of cortical and subcortical brain regions (45–47). Dopamine neu-
rons in SN/VTA encode reward PEs (11, 48) that are broadcast to
VS (12). Similar neuronal populations have been found to encode
information about effort and reward (49, 50). Using an anatomi-
cally defined mask of SN/VTA, we found that at the time of
feedback this region encodes both reward and effort PEs (Fig. 3;
P < 0.05, small-volume FWE correction for SN/VTA; SI Appendix,
Table S1), consistent with a common dopaminergic midbrain ori-
gin for striatal and cortical PE representations.

Ascending Mesolimbic and Mesocortical Connections Encode PEs. PEs
in both dopaminergic midbrain and (sub)cortical regions suggest that
SN/VTA express effort and reward learning signals which are then
broadcast to VS and dmPFC. However, there are also important
descending connections from dmPFC and VS to SN/VTA (51, 52),
providing a potential source of top–down influence on midbrain. To
resolve directionality of influence, we used a directionally sensitive
analysis of effective connectivity. This analysis compares different
biophysically plausible generative models and from this determines
the model with the best-fitting neural dynamics [dynamic causal
modeling; DCM (53); Materials and Methods]. We found strong ev-
idence in favor of a model where effort and reward PEs provide a
driving influence on ascending compared with descending or mixed
connections (Bayesian random-effects model selection: expected
posterior probability 0.55, exceedance probability 0.976, Bayesian
omnibus risk 2.83e-4), a finding consistent with PEs computed within
SN/VTA being broadcast to their distinct striatal and cortical targets.

A Spatial Dissociation of Effort and Reward PEs in SN/VTA. A functional
double dissociation between VS and dmPFC, but a simultaneous
representation of both PEs in dopaminergic midbrain, raises a
question as to whether effort and reward PEs are spatially dissociable
within the SN/VTA. Evidence in rodents and nonhuman primates
points to SN/VTA containing dissociable dopaminergic populations
projecting to distinct areas of cortex and striatum (45–47, 54, 55).
Specifically, mesolimbic projections to striatum are located in
medial parts of the SN/VTA, whereas mesocortical projections to
prefrontal areas originate from more lateral subregions (46, 47,
56). However, there is considerable spatial overlap between these
neural populations (46, 47) as well as striking topographic differ-
ences between species, which cloud a full understanding of human
SN/VTA topographical organization (45, 46).

Fig. 3. Dopaminergic midbrain encodes reward and effort PEs at outcome. Analysis of SN/VTA revealed a significant reward (A) and effort (B) PE signal (P < 0.05,
small-volume height-FWE correction for anatomically defined SN/VTA). Gray lines depict boundaries of anatomical SN/VTA mask. A simultaneous encoding of
both PEs [C; mean activity in anatomical SN/VTA: reward PE: t(27) = 5.26, P < 0.001; effort PE: t(27) = 2.90, P = 0.007] suggests a common origin of the dissociable
(sub)cortical representations. Activation increase signals the outcome was better than expected for reward PEs, but indicates an increased effort threshold for
effort PEs. Bar and line plots indicate mean effect size for regressor ± 1 SEM; **P < 0.01, ***P < 0.001. a.u., arbitrary units.
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A recent human structural study (57) segregated SN/VTA into
ventrolateral and dorsomedial SN/VTA subregions. This moti-
vated us to examine whether SN/VTA effort and reward PEs are
dissociable along these axes (Fig. 4A). Using unsmoothed data, we
tested how well activity in each SN/VTA voxel is predicted by
either effort or reward PEs (Materials and Methods). The location
of each voxel along the ventral–dorsal and medial–lateral axis was
then used to predict the t-value difference between effort and
reward PEs. A significance related to both spatial gradients [Fig.
4B and SI Appendix, Fig. S6; ventral–dorsal gradient: β = −0.151,
95% confidence interval (C.I.) −0.281 to −0.022, P = 0.016; medial–
lateral gradient: β = 0.469, 95% C.I. 0.336 to 0.602, P < 0.001]
provided evidence that dorsomedial SN/VTA is more strongly af-
filiated with reward PE encoding, whereas the ventrolateral SN/
VTA was more affiliated with effort PE encoding. We also exam-
ined whether this dissociation reflected different projection path-
ways using functional connectivity measures of SN/VTA with VS
and dmPFC. Analyzing trial-by-trial blood oxygen level-
dependent (BOLD) coupling (after regressing out the task-related
effort and reward PE effects), we replicated these spatial gradients,
with dorsomedial and ventrolateral SN/VTA more strongly coupled
to VS and dmPFC, respectively (Fig. 4B; ventral–dorsal: β = −0.220,
95% C.I. −0.373 to −0.067, P = 0.002; medial–lateral; β = 0.466,
95% C.I. 0.310 to 0.622, P < 0.001). Similar results were obtained
when using effect sizes rather than t values, and when computing
gradients on a single-subject level in a summary statistics approach.
To explore further the spatial relationship between SN/VTA,

dmPFC, and VS, we investigated structural associations between
these areas. We used structural covariance analysis (58), which in-
vestigates how gray matter (GM) densities covary between brain
regions, and has been shown sensitive for identifying anatomically
and functionally relevant networks (59). Specifically, we asked how
well GM density in each SN/VTA voxel is predicted by dmPFC and
VS GM (regions defined by their functional activations) and their
spatial distribution between subjects. Importantly, this analysis is
entirely independent from our previous analyses, as it investigates
individual GM differences as opposed to trial-by-trial functional task
associations. Note there was no association between BOLD response
and GM (dmPFC: r= 0.155, P = 0.430; VS: r = 0.100, P = 0.612; SN/
VTA: effort PEs: r = 0.067, P = 0.737; reward PEs: r = 0.079, P =
0.690). We found both spatial gradients were significant (Fig. 4C;
ventral–dorsal gradient: β = −0.012, 95% C.I. −0.018 to −0.006, P <
0.001; medial–lateral: β = 0.007, 95% C.I. 0.002 to 0.013, P = 0.007),

suggesting that SN/VTA GM was more strongly associated with
dmPFC GM in ventrolateral and with VS GM in dorsomedial areas,
thus confirming the findings of our previous analyses.

Apathy Is Predicted by Prefrontal but Not Striatal Function. Several
psychiatric disorders, including schizophrenia, express effort-
related deficits (e.g., 28–30). A long-standing hypothesis assumes
an imbalance between striatal and cortical dopamine (26, 60, 61),
involving excess dopamine release in striatal (62, 63) but deficient
dopamine release in cortical areas (64). While the former is linked
to positive symptoms, such as hallucinations, the latter is consid-
ered relevant to negative symptoms, such as apathy (26, 28, 29).
Given the striatal–cortical double dissociation, we examined
whether apathy scores in our subjects, as assessed using the Apathy
Evaluation Scale [AES (65)], were better predicted by dmPFC or
VS activation. We ran a fivefold cross-validated prediction of AES
total score using mean functional responses in either dmPFC or VS
(using the same functional ROIs as above), using effort and reward
PE responses in both regions (correlation between predictors:
dmPFC: r = 0.149, P = 0.458; VS: r = 0.144, P = 0.473). We found
that dmPFC activations were highly predictive of apathy scores
(Fig. 5A; P < 0.001, using permutation tests; Materials and Meth-
ods). Interestingly, the effect sizes for both reward (0.573 ± 0.050)
and effort (0.351 ± 0.059) prediction errors in dmPFC showed a
positive association with apathy, meaning that the bigger a pre-
diction error in dmPFC, the more apathetic a person was. Activity
in VS did not predict apathy (Fig. 5B; P = 0.796). This was also
reflected by a finding that extending a dmPFC-prediction model
with VS activation did not improve apathy prediction (P = 0.394).
There was no association between dmPFC (r = −0.225, P = 0.258)
or VS (r = 0.142, P = 0.481) GM and apathy. Furthermore, we
found no link between overt behavioral variables and apathy
(money earned: r = −0.02, P = 0.927; mean exerted effort: r = 0.00,
P = 0.99; SD exerted effort: r = −0.24, P = 0.235; N trials not
succeeding effort threshold: r = −0.13, P = 0.525). These findings
suggest self-reported apathy was specifically related to PE pro-
cessing in dmPFC. Intriguingly, finding an effect of dmPFC reward
PEs on apathy in the absence of a reward PE signal in this area at a
group level (Fig. 2F) suggests an interpretation that apathy might
be related to an impoverished functional segregation between
mesolimbic and mesocortical pathways. Indeed, we find a signif-
icant effect of reward PEs only in more apathetic subjects
[median-split analysis: low-apathy group: effect size: −1.23 ± 3.43;

Fig. 4. SN/VTA spatial expression mirrors cortical and striatal organization. (A and B) Effort and reward PEs in SN/VTA follow a spatial distribution along a
ventral–dorsal (green color gradients) and a medial–lateral (violet color gradients) gradient, respectively. Multiple regression analysis revealed that ventral
(green bars) and lateral (violet bars) voxels of SN/VTA are representing effort PEs more strongly, relative to reward PEs. Effect maps (B, Left) show that
dorsomedial voxels preferentially encode reward PEs (red colors), whereas ventrolateral voxels more strongly encode effort prediction errors (blue colors)
(also see SI Appendix, Fig. S6). A functional connectivity analysis (B, small bar plot) revealed SN/VTA expressed spatially distinct functional connectivity
patterns: Ventral and lateral voxels are more likely to coactivate with dmPFC, whereas dorsal and medial SN/VTA voxels are more likely to coactivate with VS
activity. (C) Gray matter analysis replicates functional findings in revealing that gray matter in ventrolateral SN/VTA covaried with dmPFC GM density,
whereas dorsomedial SN/VTA GM was associated with VS GM density. Our findings of consistent spatial gradients within SN/VTA thus suggest distinct
mesolimbic and mesocortical pathways that can be analyzed along ventral–dorsal and medial–lateral axes in humans. Bar graphs indicate effect size ± 95%
C.I.; *P < 0.05, **P < 0.01, ***P < 0.001. a.u., arbitrary units.
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t(13) = −1.35, P = 0.201; high-apathy group: effect size: 2.37 ±
2.83; t(12) = 3.02, P = 0.011] supporting this notion.

VS Encodes Subjective Net Benefit. During anticipation, it is sug-
gested VS encodes an overall net benefit or integrated utility signal
incorporating both effort and reward (2, 66). We examined whether
VS activity during cue presentation tracked both reward and
effort expectation. Using a region-of-interest analysis (bilateral VS
extracted from reward PE contrast), we found a significant reward
expectation effect (Fig. 6) [t(27) = 2.23, P = 0.035] but no effect of
effort expectation [t(27) = 0.72, P = 0.476] at stimulus presentation.
These findings accord with predictions of our model, where sub-
jective value increases as a direct function of reward but where
subjective value does not decrease linearly with increasing effort
(Fig. 6, Left). Instead, the sigmoidal function of our reward–effort
arbitration model suggests that effort influences subjective value
through an interaction with reward. This predicts that during low-
effort trials, reward has little impact on subjective value, whereas for
high effort the differences between low- and high-reward trials will
engender significant change in subjective value. We formally tested
this by examining the interaction between effort and reward, and
found a significant effect [Fig. 6; t(27) = 2.94, P = 0.007]. A post hoc
median-split analysis confirmed the model’s prediction evident in a
significant effect of reward in high- [t(27) = 3.28, P = 0.003] but not
in low-effort trials [t(27) = 0.61, P = 0.547].

Discussion
Tracking multiple aspects of a choice option, such as reward and
effort, is critical for efficient decision making and demands si-
multaneous learning of these choice attributes. Here we show that
the brain exploits distinct mesolimbic and mesocortical pathways to
learn these choice features in parallel with a reward PE in VS and
effort PE represented in dmPFC. Critically, we demonstrate that
both types of PE at outcome satisfy requirements for a full PE,
representing both an effect of expectation and outcome (cf. 42),
and thus extend previous single-attribute learning studies for re-
ward PE (e.g., 12, 36, 42) and effort outcomes (24, 25).
Our study shows a functional double dissociation between VS

and dmPFC, highlighting their preferential processing of reward
and effort PE, respectively. This functional and anatomical segre-
gation provides an architecture that can enable the brain to learn
about multiple decision choice features simultaneously, specifically
predictions of effort and reward. Although dopaminergic activity
cannot be assessed directly using fMRI, both effort and reward PEs
were evident in segregated regions of dopaminergic-rich midbrain,
and where an effective connectivity analysis indicated a directional
influence from SN/VTA toward subcortical (reward PE) and cor-
tical (effort PE) targets via ascending mesolimbic and mesocortical
pathways, respectively.
Dopaminergic midbrain is thought to comprise several distinct

dopaminergic populations that have dissociable functions (54, 56, 67,
68). Here we demonstrate a segregation between effort and reward

learning within SN/VTA across the domains of task activation,
functional connectivity, and gray matter density. In SN/VTA, a
dorsomedial encoding of reward PEs, and a ventrolateral encoding
of effort PEs, extends previous studies on SN/VTA subregions (56,
57, 67, 68) by demonstrating that this segregation has functional
implications that are exploited during multiattribute learning. In
contrast to previous studies on SN/VTA substructures (56, 67–69),
we performed whole-brain imaging, which allowed us to investigate
the precise interactions between dopaminergic midbrain and striatal/
cortical areas. However, this required a slightly lower spatial SN/
VTA resolution than previous studies (56, 67–69), restricting our
analyses to spatial gradients across the entire SN/VTA rather than
subregion analyses. We speculate that the dorsomedial region
showing reward PE activity is likely to correspond to a dorsal tier of
dopamine neurons known to form mesolimbic connections projec-
ting to VS regions (55) (SI Appendix, Fig. S6). By contrast, the
ventrolateral region expressing effort PE activation is likely to be
related to ventral tier dopamine neurons (46, 55) that form a mes-
ocortical network targeting dmPFC and surrounding areas (46, 47).
Our computational model showed that learning about choice

features exploits PE-like learning signals, and in so doing extends on
previous models by integrating reward and effort learning (cf. 24, 70)
with effort discounting (39–41). The effort PE encoded in dmPFC
can be seen as representing an adjustment in belief about the height
of a required effort threshold. It is interesting to speculate about the
functional meaning of this PE signal, such as whether this is more
likely to signal motivation or the costs of a stimulus. Our findings
that effort PEs have an invigorating function favor the former no-
tion, although we acknowledge we cannot say whether effort PEs
would also promote avoidance if our task design included an explicit
option to default. External support for an invigorating function
comes from related work on dopamine showing that it broadcasts a
motivational signal (16, 71) that in turn influences vigor (72–74).
Interestingly, direct phenomenological support for such a motiva-
tional signal comes from observations in human subjects undergoing
electrical stimulation of cingulate cortex, who report a motivational
urge and a determination to overcome effort (75).
VS is suggested to encode net benefit or integrated utility of a

choice option (1, 30), in simple terms the value of a choice in-
tegrated over benefits (rewards) and costs (effort). The interaction
between effort and reward expectations we observe in VS during
anticipation is consistent with encoding of an integrated net benefit
signal, but in our case this occurs exclusively during anticipation. In
accordance with our model reward, magnitude is less important in
low-effort trials but assumes particular importance during high-effort
trials. However, the absent reward effect in low-effort trials contrasts
with studies that find reward-related signals in VS during cue pre-
sentation, but in the latter there is no effort requirement (e.g., 76).
This deviation from previous findings might reflect that subjects in
our task need to execute effort before obtaining a reward.
Nevertheless, the convergence of our model predictions and
the interaction effect seen in VS supports the notion that a net

Fig. 5. Apathy related to cortical but not striatal function. (A) Prediction error signals in dmPFC significantly predicted apathy scores as assessed using an
apathy self-report questionnaire (AES total score). (B) PE signals in VS were not predictive of apathy. a.u., arbitrary units.
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benefit signal is formed at the time of action anticipation, when
an overall stimulus value is important in preparing an appro-
priate motor output.
Effortful decision making assumes considerable interest in the

context of pathologies such as schizophrenia, and may provide for a
quantitative metric of negative symptoms (28). An association be-
tween impaired effort arbitration and negative symptoms in patients
with schizophrenia (e.g., 29) supports this conjecture, although it is
unknown whether such an impairment is tied to a prefrontal or
striatal impairment. Within our volunteer sample, apathy was re-
lated to aberrant expression of learning signals in dmPFC but not in
VS. This suggests that negative symptoms may be linked to a
breakdown in a functional segregation between mesolimbic and
mesocortical pathways, and this idea accords with evidence of ap-
athetic behavior seen following ACC lesioning (23).
We used a naturalistic task reflecting the fact that in many envi-

ronments, effort requirements are rarely explicit and are usually
acquired by trial and error while reward magnitudes are often ex-
plicitly learned. Although this entails a difference in how feedback is
presented, we consider it unlikely to influence neural processes,
given that previous studies with balanced designs showed activations
in remarkably similar regions to ours (e.g., 24, 25) and because
prediction error signals are generally insensitive to outcome mo-
dality (primary/secondary reinforcer, magnitude/probabilistic feed-
back, learning/no learning) (e.g., 12, 36, 70, 77). Moreover, the
specificity of the signals in VS and dmPFC for either reward or
effort, including a modulation by expectation, favors a view that the
pattern of responses observed in these regions reflects specific pre-
diction error signals as opposed to simple feedback signals.
It is interesting to conjecture whether a spatial dissociation that

we observe for simultaneous learning of reward and effort also
holds if subjects learn choice features at different times, or learn
about choice features other than reward and effort. Our finding of
a mesolimbic network encoding reward PEs during simultaneous
learning accords with results from simple reward-alone learning
(e.g., 12). This, together with a known involvement of dmPFC in
effort-related processes (24, 25, 40), renders it likely that the same
pathways are exploited in unidimensional learning contexts.
However, it remains unknown whether the same spatial segrega-
tion is needed to learn about multiple forms of reward that are
associated with VS activity (e.g., monetary, social).
In summary, we show that simultaneous learning about effort and

reward involves dissociable mesolimbic and mesocortical pathways,
with VS encoding a reward learning signal and dmPFC encoding an
effort learning signal. Our data indicate that these PE signals arise
within SN/VTA, where an overlapping, but segregated, topological
organization reflects distinct neural populations projecting to cortical

and striatal regions, respectively. An integration of these segregated
signals occurs in VS in line with an overall net benefit signal of an
anticipated action.

Materials and Methods
Subjects. Twenty-nine healthy, right-handed, male volunteers (age, 24.1 ± 4.5 y;
range, 18 to 35 y) were recruited from local volunteer pools to take part in this
experiment. All subjects were familiarized with the hand grippers and the task
before entering the scanner (SI Appendix). Subjects were paid on an hourly basis
plus a performance-dependent reimbursement. We focused on male subjects
because we wanted to minimize potential confounds which we observed in a
pilot study, for example fatigue in high-force exertion trials. One subject was
excluded from fMRI analysis due to equipment failure during scanning. The
study was approved by the University College London (UCL) research ethics
committee, and all subjects gave written informed consent.

Task. The goal of this studywas to investigate howhumans simultaneously learn
about reward and effort in an ecologically realistic manner. In the task (Fig. 1A),
subjects were presented with one of two stimuli (duration 1,000 ms). The
stimuli (pseudorandomized, no more than three presentations of one stimulus
in a row) were indicative of a potential reward (1 to 7 points, 50% reward
probability) and an effort threshold that needed to be surpassed (range of
effort threshold between 40 and 90% maximal force) in order to harvest a
reward. Both points and effort thresholds slowly changed over time in a
Gaussian random-walk–like manner (Fig. 1B), whereas the reward outcome
probability remained stationary across the entire experiment, and subjects
were informed about this beforehand. These trajectories were constructed so
that reward and effort were decorrelated, and indeed the realized correlation
between effort and reward prediction errors was minimal. Moreover, in-
dependent trajectories for effort and reward allowed us to cover a wide range
of effort and reward expectation combinations, enabling us to comprehensibly
assess a reward–effort arbitration function. Thus, to master the task, subjects
had to simultaneously learn both reward and effort thresholds. After a jittered
fixation cross (mean, 4,000 ms; uniformly distributed between 2,000 and
6,000 ms), subjects had to squeeze a force gripper with their right hand for
5,000 ms. During the first 1,000 ms, the subjects increased their force to the
desired level (as indicated by a horizontal thermometer; blue frame phase).
During the last 4,000 ms, subjects maintained a constant force (red frame
phase) and released as soon as the thermometer disappeared from the screen.
After another jittered fixation cross (mean, 4,000 ms; range, 2,000–6,000 ms),
subjects received feedback whether and howmany points they received for this
trial (duration, 1,000 ms). If the exerted effort was above the effort threshold,
subjects received the points that were on display. If the subjects’ effort did not
exceed the threshold, a cross appeared above the number on display, which
indicated that the subject did not receive any points for that trial. More details
about the task are provided in SI Appendix.

Behavioral Analysis. To assess the factors that influence effort execution (Fig. 1C),
we used multiple regression to predict the exerted effort at each trial. As pre-
dictors, we entered the exerted effort as well as the number of points (displayed

Fig. 6. Unified and distinct representations of effort and reward during anticipation. Ventral striatum encoded a subjective value signal in accord with pre-
dictions of our computational model (Left). A main effect of expected reward (Middle) reflected an increase in subjective value with higher reward. The reward ×
effort interaction (Middle) and the subsequent median-split analysis (Right) show that a difference between high and low rewards is more pronounced during
high-effort trials, as predicted by our model (blue arrows; Left). A similar interaction effect was found when using a literature-based VS ROI [reward × effort
expectation: t(27) = −2.28, P = 0.016; high–low reward in high effort: t(27) = 2.51, P = 0.018; high–low reward in low effort: t(27) = −0.41, P = 0.684]. Bar and line
plots indicate mean effect size for regressor ± 1 SEM. *P < 0.05; **P < 0.01; nonsignificant (n.s.), P > 0.10.
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during feedback) on the previous trial, and whether the force threshold was
successfully surpassed on the previous trial. Please note that the previous trial
was determined as the last trial that the same stimulus was presented. The
regression weights of the normalized predictors were obtained for each indi-
vidual and then tested for consistency across subjects using t tests. To test how
subjects changed their effort level based on whether they surpassed the
threshold or not (“success”), we analyzed the change in effort conditioned on
their success. For each subject, we calculated the average change in effort for
success and nonsuccess trials and then tested consistency using t tests across all
subjects (Fig. 1D).

Computational Modeling. We developed novel computational reinforcement
learning models (32) to formalize the processes underlying effort and reward
learning in this task. All models were fitted to individual subjects’ behavior
(executed effort at each trial), and a model comparison using the Bayesian
information criterion was performed to select the best-fitting model (SI Ap-
pendix, Fig. S2). The preferred model was then used for the fMRI analysis. The
models and model comparison are detailed in SI Appendix.

fMRI Data Acquisition and Preprocessing.MRI was acquired using a Siemens Trio
3Tesla scanner, equipped with a 32-channel head coil. We used an EPI sequence
that was optimized for minimal signal dropout in striatal, medial prefrontal, and
brainstem regions (78). Each volume was formed of 40 slices with 3-mm isotropic
voxels [repetition time (TR), 2.8 s; echo time (TE), 30 ms; slice tilt, −30°]. A total of
1,252 scans were acquired across all four sessions. The first 6 scans of each session
were discarded to account for T1-saturation effects. Additionally, field maps (3-
mm isotropic, whole-brain) were acquired to correct the EPIs for field-
strength inhomogeneity.

All functional and structuralMRI analyseswereperformedusing SPM12 (www.
fil.ion.ucl.ac.uk). The EPIs were first realigned and unwarped using the field
maps. EPIs were then coregistered to the subject-specific anatomical images and
normalized using DARTEL-generated (79) flow fields, which resulted in a final
voxel resolution of 1.5 mm (standard size for DARTEL normalization). For the
main analysis, the normalized EPIs were smoothedwith a 6-mm FWHMkernel to
satisfy the smoothness assumptions of the statistical correction algorithms. For
the gradient analysis of SN/VTA (“unsmoothed analysis”), we used a small
smoothing kernel of 1 mm to preserve more of the voxel-specific signals. We
applied this very small smoothing kernel rather than no kernel to prevent ali-
asing artifacts that naturally arise from the DARTEL-normalization procedure.

fMRI Data Analysis. The main goal of the fMRI analysis was to determine the
brain regions that track reward and effort prediction errors. To this end, we
used the winning computational model and extracted the model predictions
for each trial. To derive the model predictions, we used the average parameter
estimates across all subjects, similar to previous studies (43, 80–84). This ensures
more regularized predictions and does not introduce subject-specific biases. At
the time of feedback, we entered four parametric modulators: effort PEs,
reward PEs, absolute effort PEs, and absolute reward PEs. For all analyses, we
normalized the parametric modulators beforehand and disabled the orthog-
onalization procedure in SPM (correlation between regressors is shown in SI
Appendix, Fig. S4). This means that all parametric modulators compete for
variance, and we thus only report effects that are uniquely attributable to the
given regressor. The sign of the PE regressors was set so that positive reward
PEs mean that a reward is better than expected, and for effort PEs a positive
PE means that the threshold is higher than expected (more effort is needed).
The task sequences were designed so as to minimize a correlation between
effort and reward PEs, as well as between expectation and outcome signals
within a PE (effort PE: r = 0.087 ± 0.105; reward PE: r = −0.002 ± 0.109), and
thus to maximize sensitivity of our analyses. To control for other events of the
task, we added the following regressors as nuisance covariates: stimulus pre-
sentation with parametric modulators for expected reward, expected effort,
expected reward–effort interaction, and stimulus identifier. To control for any
movement-related artifacts, we also modeled the force-execution period
(block duration, 5,000 ms) with executed effort as parametric modulator.
Moreover, we regressed out movements using the realignment parameters, as
well as pulsatile and breathing artifacts (85–88). Each run was modeled as a
separate session to account for offset differences in signal intensity.

On the second level, we used the standard summary statistics approach in
SPM (89) and computed the consistency across all subjects. We used whole-
brain family-wise error correction P < 0.05 to correct for multiple comparisons
(if not stated otherwise) using settings that do not show any biases in dis-
covering false positives (90, 91). We examined the effect of each regressor of
interest (effort, reward PE) using a one-sample t test to assess the regions in
which there was a representation of the regressor. Subsequent analyses (Fig. 2
B, C, E, and F) were performed on the peak voxel in the given area. Prediction

errors were compared using paired t tests. To assess the effect of effort and
reward PEs on SN/VTA, we used the same generalized linear model applying
small-volume FWE correction (uncorrected threshold P < 0.001) based on our
anatomical SN/VTA mask (see below), similar to previous studies (e.g., 92, 93).

For the analysis of the cue phase, we extracted responses of a VS ROI and
then assessed the impact of our model-derived predictors’ expected effort,
expected reward, and their interaction.

Effective Connectivity Analysis. To assess whether PE signals are more likely to
be projected from SN/VTA to (sub)cortical areas or vice versa,we ran aneffective
connectivity analysis using dynamical causal modeling (53). DCM allows the
experimenter to specify, estimate, and compare biophysically plausible models
of spatiotemporally distributed brain networks. In the case of fMRI, generative
models are specified which describe how neuronal circuitry causes the BOLD
response, which in turn elicits the measured fMRI time series. Bayesian model
selection (94) is used to determine which of the competing models best ex-
plains the data (in terms of balancing accuracy and complexity), drawing upon
the slow emergent dynamics which result from the interaction of fast neuronal
interactions [referred to as the slaving principle (89)].

We compared several models, all consisting of three regions SN/VTA (using
the anatomical ROI), VS, and dmPFC (using the functional contrasts for ROI
definition). As fixed inputs, we used the onset of feedback as a stimulating
effect on all three nodes. We assumed bidirectional connections between SN/
VTA and dmPFC/VS regions, reflecting the well-known bidirectional commu-
nication. The models differed in how PEs influenced these connections. Based
on the assumption that PEs are computed in the originating brain structure and
influence the downstream brain region, we tested whether PEs modulated the
connections originating from SN/VTA or targeting it. This same approach (PEs
affecting modulation of intrinsic connections) was used in previous studies
investigating the effects of PEs on effective connectivity (e.g., 95, 96). We
compared six models in total. In the winning ascending model, reward and
effort PEs [each only modulating the connection to its (sub)cortical target
region] modulated the ascending connections (e.g., reward PEs modulated
connectivity from SN/VTA to VS). In the descending model, PEs modulated the
descending connections from VS and dmPFC to SN/VTA. Additional models
tested whether only having one ascending modulation (either effort or re-
ward PEs), or having one ascending and one descending modulation, fitted
the data better. DCMs were fitted for each subject and run separately, and
Bayesian random-effects comparison (94) was used for model comparison.

fMRI Analysis of SN/VTA Gradients. For the analysis of the SN/VTA gradients
with the unsmoothed data, the model was identical to the one above, with the
exception that the feedback on each trial was modeled as a separate regressor.
This allowed us to obtain an estimate of the BOLD response separately for each
trial (necessary for functional connectivity analysis), in keeping with the same
main effects as in normal mass-univariate analyses (cf. 37). These responses
were then used to perform our gradient analyses.

We performed two SN/VTA gradient analyses with the functional data. For
the PE analysis, we used the model-derived PEs (as described above) to predict
the effects of effort and reward PEs on each voxel of our anatomically defined
SN/VTA mask. We then calculated t tests for each voxel on the second level,
using the beta coefficients of all subjects. As we were interested whether there
is a spatial dissociation/gradient between the two PE types, we then calculated
the difference of the absolute t values between the two prediction errors, for
each voxel separately. This metric allows us to measure whether a voxel was
more predictive of effort or reward PEs. To ensure that we only use voxels that
have some response to the PEs, we discarded a voxel that has an absolute t
value <1 for both prediction errors. We used the absolute of the t values for
our contrast to account for potential negative encoding.

To calculate the gradients, we used amultiple regression approach to predict
the t-value differences (e.g., effort − reward PE). As predictors, we used the
voxel location in a ventral–dorsal gradient and a voxel location in a medial–
lateral gradient. Both gradients entered the regression, together with a nui-
sance intercept. This analysis resulted in a beta weight for each of the gradients,
which indicates whether the effect of the prediction errors follows a spatial
gradient or not. We obtained the 95% confidence intervals of the beta weights
and calculated the statistical significance using permutation tests (10,000 itera-
tions; randomly permuting the spatial coordinates of each voxel).

For the second, functional connectivity analysis, we used the very same
pipeline. However, instead of using model-derived prediction errors, we now
used the BOLD response for every trial from the dmPFC and bilateral VS (mean
activation across the entire ROI). The ROIs were determined based on task main
effect (dmPFC based on effort PEs, VS based on reward PEs, both thresholded at
PFWE < 0.05). To ensure this analysis did not reflect the task effects, we regressed
out the task effect (reward/effort PEs) before the main analysis.
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We found similar effect when using beta weights (which do not take
measurement uncertainty into account) instead of t values, and also if we
include all voxels, irrespective of whether they respond to any of the PEs.
Similar results were also obtained when using a summary statistics approach,
in which spatial gradients were obtained for each single subject.

Predicting Apathy Through BOLD Responses. To assess whether self-reported
apathy—a potential reflection of nonclinical negative symptoms (27)—was
related to neural responses in our task, we tested whether we can predict
apathy by using task-related activation. Apathy was assessed using a self-
report version of the Apathy Evaluation Scale (65) (missing data from one
subject). We used the total scores as a dependent variable in a fivefold cross-
validated regression (cf. 84, 97). To assess whether apathy was more closely
linked to dmPFC or VS activation, we used the activation in the given ROI
(using mean activation at P < 0.05 FWE ROI, same as in previous analyses),
including both effort and reward prediction error signals at the time of out-
come. To assess prediction accuracy, we then calculated the L2 norm between
predicted and true apathy scores across all subjects (cf. 97). To establish a
statistical null distribution, we ran permutation tests by randomly shuffling the
PE responses. To assess whether the VS predictors improved a dmPFC pre-
diction, we compared the predictive performance of the dmPFC model with an
extended model with VS activations as additional predictors. Permutation tests
(by permuting the additional regressors) were again used to assess significance
between dmPFC and the full model.

Structural MRI Data Acquisition and Analysis. Structural images were acquired
using quantitative multiparameter maps (MPMs) in a 3D multiecho fast low-
angle shot (FLASH) sequence with a resolution of 1-mm isotropic voxels (98).
Magnetic transfer (MT) images were used for gray matter quantification,
as they are particularly sensitive for subcortical regions (99). In total, three
different FLASH sequences were acquired with different weightings: pre-
dominantly MT (TR/α, 23.7 ms/6°; off-resonance Gaussian MT pulse of 4-ms
duration preceded excitation, 2-kHz frequency offset, 220° nominal flip angle),
proton density (23.7 ms/6°), and T1 weighting (18.7 ms/20°) (100). To increase
the signal-to-noise ratio, we averaged signals of six equidistant bipolar gradient
echoes (TE, 2.2 to 14.7 ms). To calculate the semiquantitative MT maps, we used
mean signal amplitudes and additional T1 maps (101), and additionally elimi-
nated influences of B1 inhomogeneity and relaxation effects (102).

To normalize functional and structural maps, we segmented the MT maps
(using heavy bias regularization to account for the quantitative nature of
MPMs), and generated flow fields using DARTEL (79) with the standard settings
for SPM12. The flow fields were then used for normalizing functional as well

as structural images. For the normalization of the structural images (MT), we
used the VBQ toolbox in SPM12 with an isotropic Gaussian smoothing kernel
of 3 mm.

To investigate anatomical links between SN/VTA and VS and dmPFC, we
performed a (voxel-based morphometry–based) structural covariance analysis
(58). The approach assumes that brain regions that are anatomically and
functionally related (e.g., form a common network) should covary in gray
matter density between subjects. This means that subjects with a strong ex-
pression of a dmPFC gray matter density should also express greater gray
matter density in ventrolateral SN/VTA, possibly reflecting genetic, de-
velopmental, or environmental influences (59). We used the segmented,
normalized gray matter MT maps and applied the Jacobian of the normali-
zation step to preserve total tissue volume (103), as reported in a previous
study (84). To account for differences in global brain volume, we calculated the
total intracranial volume and used it as a nuisance regressor in the analysis. For
each subject, we extracted the mean gray matter density in dmPFC and bi-
lateral VS (mask derived from functional contrasts, thresholded at PFWE < 0.05;
see above). Additionally, we extracted the gray matter density of each voxel in
our SN/VTA mask. We then calculated the effect of dmPFC and VS gray matter
in a linear regression model predicting the gray matter density in every voxel
in SN/VTA. Similar to our functional analysis, we calculated the difference of
the t values for dmPFC and VS for each voxel (dmPFC − VS). These were then
used for the same spatial gradient analysis as in the analysis described above.

For all our SN/VTA analyses, we used amanually drawn anatomical region of
interest in MRIcron (104). We used the mean structural MT image where SN/
VTA can be easily distinguished from surrounding areas as a bright white
stripe (45), similar to previous studies (92, 93).

Data Availability. Imaging results are available online at neurovault.org/
collections/IAYMWZIY/.
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